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1

CHAPTER 1 INTRODUCTION

Raman Spectroscopy (RS) is a non-invasive technique that can provide a fingerprint of a

molecule. The influence of water is minimal in Raman spectrum which makes it a suitable

technique for biological application since biological samples have an abundance of water.

Currently, microbiological techniques can identify microorganisms on species and strain.

However, these methods are labor-intensive as analysis concentrates on certain types of

biomolecule analysis. Raman spectra of bacteria provide a molecular fingerprint pattern of

bacteria which can be used for identification. Nevertheless, they contain the information

of the cell’s composition. Bacteria have a conventional structure, and as a result, their

spectra have a typical pattern. However, it is complicated to assign each band to the cell’s

composition as Raman spectra are a superposition of contributions from all Raman active

molecules in the cell.

Although data analysis techniques have developed rapidly in recent years, the evaluation

of techniques for Raman spectra analyses has not been satisfactory. As a result, they have

relied on expert effort and assignment of each band to specific vibrations or biomolecules that

cause the identification of bacteria to be labor-intensive and less accurate, as they ignore

possible vibrations of other molecules. On the other hand, contributions of background

molecules in Raman spectra of bacteria are not well-understood, as they are challenging and

complex which restricts the usage of the current approaches for clinical applications.

This study aims to develop data analysis techniques based on deep learning methods

to identify bacteria, in particular, S. pyogenes, using their Raman spectra. It includes the

study of current approaches for bacteria identification and whether these approaches provide
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useful information to design a deep neural network. Although the proposed technique in this

dissertation will be tested on S. pyogenes dataset, it can provide a framework to be extended

to other bacteria as well.

1.1 Background

Bacteria are single-cell organisms that are associated with infectious disease. Although

some bacteria are important for human health, pathogenic bacteria can be a threat to hu-

man life. For example, some staphylococci pathogens cause food poisoning [5] and some

streptococci cause throat and ear infections [6].

Over decades these pathogens have been investigated, and methods have been developed

to detect and characterize the pathogens. In vitro identification of the pathogens has had

an enormous impact on patients with infections, and it has been shown that the mortality

rates and health care costs can be reduced when bactria are identified quickly [7].

Bacteria can be classified into three groups based on their morphological forms: rods

(bacilli), spherical (cocci), and spirals (spirilla). Although their morphological form can be

different, they have a typical structure. The cell envelope, cytoplasm, and nucleoid (DNA)

are the primary structure of bacteria. The cell envelope is the most critical part of the

bacteria that keeps it alive and is composed of the capsule, cell wall, and cell membrane.

Gram-positive bacteria consist of a two-layer wall, a thick peptidoglycan sheet, and an

internal membrane. Gram-negative bacteria have a cell wall of multilayer structure: a thin

peptidoglycan sheet, an internal membrane, periplasm, and outer membrane. The outer

membrane is a lipid bilayer composed of phospholipids and lipopolysaccharide (LPS). LPS is

composed of two proteins and a lipid A tail. Gram-positive bacteria are classified as aerobic
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cocci and bacilli based on their shape. Gram-negative bacteria are divided into four groups:

cocci, enteric, nonfermenters, and pleomorphic bacteria. Gram-positive aerobic cocci has a

thick cell wall and spherical shape and show aerobic action on glucose. There are many known

Gram-positive aerobic cocci, such as Micrococcus, Staphylococcus, and Streptococcus.

Streptococcus bacteria are divided into four groups. S. pyogenes cause throat infections

and can be treated with penicillin. S. agalactiae bacteria are responsible for urogenital

infections. Type D Streptococcus includes two subgroups of enterococci and non-enterococci.

The last group is the viridans group that includes S. mitis and S. mutans.

Streptococcus pyogenes, so-called strep A, can cause throat and skin infection and may

vary from mild condition to life-threating disease. The non-invasive GAS infections are more

common and less severe, and bacteria usually colonize the throat area. Strep throat, so-called

pharyngitis, causes 15-30% of childhood cases and 10% of adult cases. These infections can

be treated with antibiotics [8]. The invasive infections of GAS are more severe and less

frequent. The bacteria colonize in areas such as blood and organs [9]. These infections

can cause diseases, such as streptococcal toxic shock syndrome (STSS), necrotizing fasciitis

(NF), pneumonia, and bacteremia [10].

Microbiological methods for bacteria identification are based on the cultivation of bacteria

from pure culture and determining the response of bacteria to environmental conditions. In

these methods, an expert is needed to compare the test case with known microorganism by

viable counting of the visible colonies [11].

Many tests are usually performed to identify a bacteria, such as the morphology test and

Gram-strain reaction [12]. These tests include blood counts, urinalysis, and cultures of blood

or fluid from a wound site. Gram-strain test is usually performed to identify Gram-positive
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cocci in chains, and then it is cultured on blood agar. Moreover, a bacitracin antibiotic disk

is added to show sensitivity for an antibiotic.

These methods are time-consuming and can take up to a few days, and accuracy is limited

[13]. Early recognition and treatment of severe GAS infections are critical [9] as they may

lead to shock, multisystem organ failure, or death.

Vibrational spectroscopy approaches have been developed because of the demands for

rapid and accurate identification of pathogens. Infrared (IR) and Raman spectroscopy (RS)

are based on the vibration modes of the molecules and provide a unique molecular fingerprint

of bacteria. In IR, an infrared light is absorbed by the sample when the light’s frequency

is matched with the natural vibration frequency of the sample molecules and the absorbed

radiation can be detected [14]. In RS, coherent light is focused on the sample and the

scattered beam detected to identify the vibration modes of molecules. These methods are

noninvasive and nondestructive and can detect bacteria rapidly and more accurately [15].

1.2 Identification of Bacteria Using Raman Spectroscopy

RS is a molecular fingerprinting method that has been used in various applications, such

as study of minerals, [16] characterization of polymers [17] and medicine [18]. Applications of

RS in chemical characterization started a long time ago. However, it has been used lately in

the study of biological samples intended to identify and characterize pathogenic organisms.

RS instrumentation has recently become more powerful, fast, and portable. Moreover, data

analysis techniques have developed rapidly. Due to its all optical and noninvasive nature,

RS can be a robust detection method for bacteria.

A shift in the vibration of the nucleus occurs when the photon interacts with the nucleus.
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Complementary to IR, which measures the dipole moment variation of a molecule, RS mea-

sures the polarizability variation of the molecule caused by the interaction of a photon and

nucleus. Vibration scattering can be categorized into Strokes and anti-Strokes scattering.

Strokes Raman scattering occurs when the emitted light has less energy than the incident

light. Hence, Strokes lines have a more extended wavelength, and a photon is released during

scattering. The loss in the energy of the scattered photon from the incident photon is con-

verted to energy for a change of the shift in dipole moment. On the other hand, anti-Strokes

scattering occurs when the scattered light has more energy than the incident light, and as a

result, a photon is destructed leading to a change in the vibration state of a molecule [19].

In this case, the molecule is already in the excited state, and an incident photon absorbs

its energy. Hence, the scattered photon emits more energy than the incident one. Strokes

scattering is more intense than anti-Strokes scattering at a standard temperature as the

probability of the lower states is more than the higher states.

Infrared absorption relies on the variation of intrinsic dipole moment as molecules vibrate.

Raman scattering requires a change in the polarizability of functional groups occurring with

atoms vibrations. As a result, polar groups such as C-O, N-H, and O-H have intense IR

stretching vibration while non-polar groups such as C�C, and S�S have strong Raman bands.

Table 1 shows the major Raman bands that are used as a reference library in microbiological

analysis [19, 1, 2].

Vibrational spectroscopy classifies microorganisms based on the biochemical compositions

of the biochemical cell membrane. Supervised and unsupervised chronometric models have

been developed to study various bacterial cells using RS.

RS has been used for discriminating many bactria including Listeria monocytogenes



www.manaraa.com

6

Assignment of Raman spectra bands
Raman fre-
quency (cm−1)

Assignment

407 Skeletal modes of carbohydrates (glucose)
481 Skeletal modes of carbohydrates (starch)
520–540 S�S str
540 COC glycosidic ring ref
620 Phenylalanine (skeletal)
640 Tyrosine (skeletal)
665 Guanine
720 Adenine
785 Cytosine, uracil
810–820 Nucleic acids (C–O–P–O–C in RNA backbone)
830 “Exposed” tyrosine
838 DNA
852 “Buried” tyrosine
858 CC str, COC 1,4 glycosidic link
897 COC str
1004 Phenylalanine
1061 C�N and C�C str
1085 C�O str
1098 CC skeletal and COC str from glycosidic link
1102 >PO−2 str (sym)
1129 C�N and C�C str
1230–1295 Amide III
1295 CH2 def
1440–1460 C�H2 def
1575 Guanine, adenine
1573 C=C, N–H def, and C–N str (amide II)
1606 Phenylalanine
1614 Tyrosine
1650–1680 Amide I
1658 Unsaturated lipids
1735 >C�O ester str
2870–2890 CH2 str
2935 CH3 and CH2 str
2975 CH3 str
3059 (C�C�H)(aromatic) str

Table 1: Major Raman bands used as a reference library in microbiological analysis [1, 2, 3].
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[20], Salmonella enterica [21], Escherichia coli O157:H7 [22], Pseudomonas aeruginosa [23],

Staphylococcus sp. [24].

As Raman signals are weak, some techniques have been developed to increase the signal

intensity. Surface-enhanced Raman scattering (SERS) is based on the fact that if an analyte

is close to a roughened surface (i.e. substrate) vibration mode can be enhanced [25, 26, 27].

SERS substrates that are suitable for biological samples consist of gold or silver nanoparticles.

It has been shown that Raman intensity is increased by as much as 1015 in-fold [28]. However,

the data from SERS bands cannot be compared with the data of RS as there is a shift in

bands.

A new method is presented to discriminate gram-positive (Enterococcus faecalis and

Streptococcus pyogenes) and gram-negative (Acinetobacter baumannii and Klebsiella pneu-

monia) bacteria using SERS [29]. For this purpose, silver nanoparticles in solutions with

highly concentrated chloride ions are used as the SERS substrate.

1.3 Deep Learning

1.3.1 Introduction to Deep Learning

The success of machine learning is based on the successful choice of features. The best

result in machine learning cannot be achieved without an expert to determine which aspect

of the problem should be considered more in the input. Natural learning systems such as

human or animal brain can determine which aspects of high-dimension input are more worth

focusing on with little guidance. This difference in feature representing and also algorithm

learning between natural and artificial learning leads to a difficulty in creating learning

systems which can respond to high-dimensional input flexibility and do ”hard AI” tasks like
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human level image understating and communicating fluently in natural language.

Mapping one data representation to another as input is valuable to a machine learning

algorithm. Input data typically are raw, low-level, unabstracted data like pixel intensity.

Representing learning algorithm aims at determining the high-level properties of raw input.

For example, this representation might be edging, shape, or color. For audio signal, it can

be frequencies or compound sound from the dictionary. This representation algorithm may

function on data independent of each other if the data are discrete, such as in a set of

independent images. Alternatively, it might depend on the history of the signal up to that

time such as in continuous audio.

There are techniques which can be considered as an automated representation, learning

which aims at reducing the dimension of input such as Principal Components Analysis (PCA)

[30], k-means clustering [31], and canonical correlation analysis (CCA) [32, 33].

These techniques are useful for pre-processing of learning algorithms. There are many

other methods which are useful for feature extraction, such as manifold learning [34, 35],

sparse coding [36, 37, 38], spectral clustering [39, 40], (single-layer) autoencoder networks

and variations [41], and probabilistic latent factor models such as latent Dirichlet allocation

[42], sigmoid belief networks [43], and restricted Boltzmann machines (RBMs) [44, 45].

These techniques produce a single new representation all at once. In other words, they do

not use intermediate layers of representation. However, deep representation learning extract

features on multiple intermediate layers where high-level features are functions of low-level

features.

It was confirmed that useful representation for the hard problem might need multiple

layers of representation [46, 47].
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The primary visual cortex in mammals has been shown o be hierarchically organized.

The earlier stages of processing, area V1, determine points, edges, and line, where the later

layer, area V2, uses this feature to identify more complex shapes [48]. Also, the visual

cortex has shown that there is a feedback connection from a high level to low levels as

well. Although some researchers were inspired by this to develop a Deep Attention Selective

Network (dasNet) [49], many models nowadays use the feedforward-based network.

To get the best result on ”hard AI” tasks, some properties of learning algorithms should

be considered such as expressivity, disentangling factors of variation, and the most criti-

cal one abstraction [50]. Expressivity suggests that useless information should be omitted.

Disentangling factors of diversification indicated that induced features should change inde-

pendently from each other. Abstraction suggests identifying inputs share information with

each other and find meaningful, predictive features. In other words, more abstract features

recognize properties shared between instances which might look dissimilar. Hence, it enables

us to use low-level features that lead to increasing the efficiency of representation and finally

creating hierarchical representation.

These representation algorithms that create hierarchy features are referred to ”deep learn-

ing”. Deep learning is based on the principle that more abstract elements are a form of the

more primitive ones. It has been shown that deep neural network can be scaled up to

high-dimension data which are useful for many tasks compared to non-hierarchy techniques.

Probabilistic models have been used in machine learning for a long time. Although Hier-

archical representation based on a probabilistic approach might be appealing, the specific

interface between multiple layers of unobservable variables is intractable. As a result, fitting

those variables to data is more difficult.
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Deep Neural Networks (DNN) are based on artificial neural networks and are descendant

from feedforward neural network, so-called multilayer perceptron. The multilayer percep-

tron is a basic feedforward neural network architecture consisting of multiple layers and a

single dimension output. The architectures of deep neural networks have been developed in

recent years to improve the results where input or output of the network shows a particular

structure. A deep learning algorithm automatically creates a hierarchical set of features.

Recent development in the field has introduced novel architectures and new techniques of

training data.

Feedforward neural networks with multiple layers were introduced long ago [51]. However,

these networks were not suitable in practice. Finding the optimal parameters for the models

has been a challenging problem. These networks consist of one or at most two hidden layers

initializing the network with random parameters and then training them based on stochastic

gradient descent technique [52]. However, this approach has failed in deep neural network

as its cost function is highly non-convex and may have a pathological curvature that causes

the failure of the gradient descent with random initialization [50, 53, 54].

Some methods were proposed to overcome these difficulties. The first method suggests

initializing the parameters through optimization of an unsupervised, generative, layer-by-

layer training criteria for multilayer networks [55, 56]. This technique, initializing before

training, has been known as ”pre-training” . One of the successful methods of pre-training

was called the deep belief network that learns parameters through a generative probabilistic

model [57, 58].

Pre-training deep neural networks helps the performance of deep networks drastically

as it might regularize them toward more general solutions. In other words, it abates the
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influence of early examples [53]. Also, it may reduce pathological curvature around random

initialization [54]. The error of gradient descent in random initialization remains unchanged

for first layers, and it varies for final layers. Pre-training causes the deep neural network to

have a reasonable initial point to start and also allows the deep neural network to propagate

all the way down to first layers.

In addition to pre-training methods, applying new activation functions has shown an

improvement in the result. The most common activation function is a sigmoid function,

such as logistic sigmoid and hyperbolic tangent. Recently, It has been shown that good

results can be obtained by using new functions, such as rectified liner units ReLU, which use

max(0, x) or maxout which uses the maximum over inputs [59].

These functions have an extensive range as they are linear while the sigmoid functions

are saturated to a maximum or a minimum which causes the derivative to vanish. As a

result, using piecewise linear activation functions helps the error of gradient descent to be

propagated to low-level layers.

The other technique to improve the result is to use a more complicated optimization

method instead of using first-order stochastic optimization. The motivation for this method

is that training with a random initialization leads to a pathological curvature which makes

first-order optimization slow. In [54], the Hessian-free algorithm approximates Newton’s

method which is applied and used by [60] to train deep networks.

Recently, deep learning networks could solve several difficult problems, such as speech

recognition [61], image and character recognition [62, 63, 64], natural language parsing [65,

66], language modeling [67], machine translation [65], pixels-to-controls video-game playing

[68], and playing the challenging game of go [69] among others. This reveals the fact that
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learning multilayer representations is a successful approach for complex tasks.

The methods for training data and choosing architectures vary significantly from one task

to another task suggesting that different problems should benefit from different algorithms.

For example, conventional neural networks are used in image processing as using shared

feature maps at different locations of an image proved to have the best outcome [62, 64]. Also,

convolutional architectures have been designed in such a way to yield the best performance,

for example, using max pooling to reduce possible overlapping regions and the use of fully

connected layers before output.

In order to acquire the best result, different architectures and different training methods

need to be used. For solving a given problem, a certain amount of experience is necessary

to identify the best architecture and optimal methods for training data. As new techniques

are introduced at a rapid pace, it will still be empirical to determine an optimal solution for

a task.

The field of deep learning is a broad area. Some architectures like convolutional neural

networks have been developed for a particular form of input; on the other hand, some

techniques such as dropout or novel transfer functions, like rectified linear, are generally

used. The empirical nature of the field prohibits proving a method dominates another in all

situations. In the present work, we aim at providing evidence that our model has desirable

properties to some extent for biological data of RS.

1.3.2 Convolutional Neural Networks

In image processing, the input is visual images that can be represented as an unstructured

vector where the intensity of pixels describes the vector. Such representation ignores the

spatial relationship between pixels. Earlier progress in the image processing area attempted
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to extract some features of the images such as edge [70], corner textures [71] and other

features. These features all are dependent on the spatial arrangement of pixels.

Convolutional neural network (CNN) is a method based on the assumptions that each

feature depends on pixels in a small window, and the same feature map should be applied

to all patches of the image that help to extract a localized characteristic of the image. CNN

is used in the Deep network by creating a deep hierarchy of multilayer CNN. This network

attempts to determine localized feature values in each layer.

In many neural networks, all neurons in hidden layers are connected to all other neurons

in the previous layer including inputs. It is possible to connect each neuron to a small number

of neurons in the previous layer. The connection patterns can be specified for the structure

in the input. For example, if an image is input, each neuron of the hidden layer can only

consider adjacent pixels of input and extend it to a network locally deep connected. Due to

implementation of this idea, in the forward pass, the weight of an unconnected neuron can

be considered zero, and thus for backpropagation, the gradient descent does not need to be

computed for empty connections.

Using local connection reduces the number of links. Weight sharing is another method

that can even lessen connection further. In weight sharing, some of the weights can be

considered the same for that layer. Convolution inspires the idea of weight sharing. In a

convolutional neural network, a filter or feature map is applied to many locations of input.

The convolution layer is usually connected to another layer named the pooling layer. For

instance, max-pooling computes the max value of the outputs of a convolution layer. Then,

the output of the pooling layer is used as input for the next layer. One advantage of applying

max-pooling to the convolution layer might be that the output of max-pooling is invariant
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to shift in inputs. In other words, the output is transnational invariance. Transnational

invariance can be useful for many data as a measure of typical data translation. The max-

pooling layer is known as a sub-sampling layer and reduces the input size drastically.

One variant of CNN is local contrast normalization (LCN). In this method, another layer

is applied on the max-pooling layer, normalizing some set of the output of max-pooling. In

other words, it subtracts the mean and divides the standard deviation of the input. This

method helps the network to have brightness invariance. It is possible to stack another CNN

network on top of the CNN network; the output of max-pooling becomes the input of the

second CNN.

Backpropagation in CNN should be modified in a way that the gradient descent prop-

agates from a higher level to lower level. These modifications can be in the forward pass,

considering all weights, such as fully connected network while supposing some of them are

the same. In backward pass, the gradient is computed for all the weights and during the up-

date, using the average of the gradients of the shared weights. For max-pooling in backward

pass, the gradient descent of the branch that gives the max value should be computed.

The other variant of CNN is for multiple channel input. In this method, the convolution

is applied to various channels. However, the weights across channels are not shared. The

other technique is to extend convolution architecture to have many filters or feature maps

for one position. In this technique, the outputs of the feature maps can be considered as

multiple channel input for the next layer.

In order to use CNN for more than one dimension, the filters can have the proportion of

the input. For example, for an image, the filter can be two dimensions. In image processing

application images usually do not have the same size. One method is to crop the image at
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the center and resize the images to the original size. Usually, the outputs of the latest CNN

in the network are connected to one or two fully connected neural networks which helps to

see the input data as a whole. Also, dropout is usually applied to fully connected layers.

Depending on the size of images or data, many implementations of CNN consider using

FFT techniques or step convolution. Sometimes using FFT methods for convolution makes

the forward and backward pass faster. The breakthrough study is introduced in [72], and

many new techniques have been presented after that which have resulted in rapid improve-

ment of CNN [73, 74].

1.3.3 Parallel Computing with Neural Networks

Computation cost is one of the major drawbacks of deep neural network, especially when

the training set is large. Parallelism is a method addressing this issue that can be in model

level or data level. DistBelief [75] is a popular framework which has two levels of parallelism.

The model parallelism suggests partitioning a model to multiple machines while com-

munication is established between them. Although there are communication costs, usually

machines are locally connected; this cost is smaller than computation cost.

Data parallelism attempts to partition data into different sets and train the model on

each set of data. Synchronizing between machines can be done by using another device,

a so-called parameter server which stores the parameters. At each step, every copy of the

model computes its parameters, such as gradient on its data, and then sends it to the

parameter server. The parameter server updates the parameter as it is received from the

different machine and broadcasts new parameters to the network after some iteration. This

approach of parallelism is called data parallelism via asynchronous communication as this

communication is asynchronous [76].
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There is another level of parallelism that is based on multithreading within a machine.

In this level, some cores are assigned to read data, and other cores are allocated to perform

matrix calculation. In this way, as soon as computation is done, data is ready for another

processing.

1.4 Dissertation Scope

The scope of this dissertation is to explore conventional machine learning techniques and

deep learning methods for the identification of S. pyogenes from other selected pathogens and

also control, not-pathogen using RS. The potential of RS as a novel diagnostic tool and the

recent development in machine learning arena have motivated us to investigate a method

which provides a real-time and end-to-end diagnostic without any expert intervention for

analyzing the spectra.

In Chapter 2 the traditional machine learning techniques are explored for pathogen iden-

tification, and their performances are compared with each other due to provide a benchmark

for a specific dataset. A unique deep neural network with an ability to provide end-to-end de-

tection with zero expert intervention will be introduced in Chapter 3 to identify S. pyogenes.

The performance of the proposed method will be discussed and compared with benchmark

methods. In Chapter 4, the challenge of using such approach in the clinical application will

be discussed to provide more insights into how this network performs.
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CHAPTER 2 IDENTIFICATION OF S. PYOGENES USING RAMAN
SPECTROSCOPY: A COMPARATIVE STUDY ON MULTIVARIATE

ANALYSES

2.1 Introduction

The rapid identification of pathogens and bacteria is a challenge for effective therapy

of bacterial disease, and there is an urgent need for improving identification approaches.

Traditional techniques require more effort and are time-consuming, and even some of these

methods are destructive [77]. A real-time method that is not destructive to the matrix

is desirable to detect pathogens. Raman Spectroscopy (RS) has been utilized to generate

a spectrum of microorganisms and is considered a cellular-based phenotype system. The

patterns generated by RS are based on molecular vibrations and can reveal the structure

and composition of the samples. As a result, RS has been to identify and characterize

biological systems [78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91].

However, biological samples are complicated by the chemical composition that makes it

challenging to interpret the patterns generated, and usually, the patterns have been compared

with known spectra of the microorganisms. The bacteria are composed of biomolecules, such

as proteins, lipids, carbohydrates and nucleic acids, and different bacteria often share similar

biomolecules in their structure. Also, each biomolecule is composed of various molecules and

macromolecules, and some of these molecules are common among other biomolecules.

Nonetheless, a molecule has a unique Raman spectrum, and the spectra of a bacterium

are distinctive. Some studies have attempted to study the molecular fingerprints of some

bacteria and distinguish critical bands or spectral markers to identify them [92, 83]. Also, a

study has been attempted to distinguish different strains of the same species [93].
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[29] attempted to characterize RS of Streptococcus pyogenes using SERS. The spectrum

bands are identified for Streptococcus pyogenes and assigned to Ring breathing (adenine),

ν(CNC) alanine, symmetric stretch CON, CC ring breathing (polysaccharide), ν(COC), ring

breathing, Amide III, ν(CO2) (α-amino acids, COH (oligosaccharides), N-Acetyl related

bands, and δ(NH) and ν(CN) amide II. The spectrum of other pathogens contains similar

bands such as nucleic acids, protein, and carbohydrates. However, their relative intensities

are different among various species. In Table 1, the assignment of Raman bands is shown,

and can be used as a reference to analyze the S. pyogenes spectra. Such characterization

methods are aimed at distinguishing spectral markers and then using them to detect or

identify the pathogens.

Sometimes a small variation in the spectra might contain critical information of a species.

The statistical analyses have been employed to interpret the Raman spectra. The multivari-

ate statistical analysis techniques are grouped into two main categories of supervised and

unsupervised methods. These techniques can be used individually or in combination. For

instance, an unsupervised method such as principal component analysis (PCA) is used to

reduce the high dimension raw spectra to a few variables such that the relevant information

is preserved. Then, supervised methods are used to discriminate the principal components

of different bacteria [94]. Unsupervised techniques rely on dividing species into distinct

groups in the form of a cluster such as PCA [95] or a dendrogram such as hierarchical clus-

ter analysis (HCA). These methods are based on the significant latent variables preserving

the information of biochemical components within the bacterial cell which contribute to

the identification of the bacteria [96]. Supervised methods provide qualitative or quanti-

tative analysis and require reference values. These methods are usually built upon a prior
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unsupervised model.

Discriminant function analysis (DFA) is a robust technique that is applied to spectra

analysis and has been used in pathogen identification studies [97]. LDA and QDA use a set

of independent variables to predict group membership of each spectrum given to maximize

the separation between groups. In other words, it attempts to minimize the variance within

groups and maximize the variance between groups [98]. Support vector machine (SVM)

[99, 100, 101] has been widely applied to RS data to classify various pathogens and bacteria

[102, 103]. SVM algorithms are based on finding the optimal boundary among classes by

solving a constrained optimization problem. Using kernel trick enables the SVM models to

perform non-linear classification. Decision trees can handle high-dimensional data better.

However, it is reported that it can overfit to training. There have been many efforts to

improve its primary drawback which has led to various tree-based algorithms [104, 105].

The ensembles of trees were one of the best ways proposed to improve prediction accuracy

and overfitting habits of decision trees. Among these algorithms, Random Forest is one of

the most attractive methods [104, 106]. It contracts each tree using a bootstrap sample

of the training data set (bagging), and also each node is split using a subset of predictors

(features) randomly selected at that node. It has been shown that this algorithm performs

very well and is very robust against overfitting [107].

The goal of this chapter is to provide a comparative evaluation of traditional machine

learning and multivariate algorithms including LDA, QDA, SVM, and Random Forest. Re-

cent studies of RS have used various algorithms for pathogen identification, and the algo-

rithms used in this study provide a representative set of discrimination and classification

methods commonly used in RS analysis. The purpose is to obtain a concise understanding
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of pros and cons of these algorithms for pathogen identification. Furthermore, an additional

objective is to provide an understanding of the efficiency of PCA algorithms through the

bias-variance analysis of these techniques.

2.2 Material and Method

2.2.1 Instrumentation and Sample Preparation

The bacterial specimen, Streptococcus pyogenes ATCC 49117 was prepared from bacteria

plated on tryptic soy agar plates. A single isolated colony from the stock bacteria streaked

nutrient agar plate was picked and added to 5 ml of tryptic soy broth in a 10ml culture tube.

This culture tube was placed on a shaker in a 37˚C incubator and incubated overnight (18

hours). The overnight culture was centrifuged at room temperature for 5 min @ 3500 rpms.

The supernatant was removed, and the bacteria pellet was re-suspended in 5ml of filtered

(sterilized) tap water. The bacteria were centrifuged, and the washing process was repeated

once. After the final wash, filtered tap water was added to the bacteria pellet until the

optical density (measured at a wavelength of 600 nm) of the solution was 1.00 ± 0 .05. A

0.15 ml volume of the bacteria suspension was then placed on a mirror polished stainless

steel substrate (alloy 304, Stainless Supply) for Raman analysis. Also, a 0.15 ml volume

of the filtered tap water was prepared and then placed on a mirror polished stainless steel

substrate (alloy 304, Stainless Supply). In addition to this data, other pathogens including

E. coli (K99), MRSA, MSSA, Legionella pneumophila, and Pseudomonas aeruginosa were

acquired in similar fashion.

RS data were acquired using an inVia Raman microscope (Renishaw) equipped with a

50 mW 514.5nm laser as the excitation source, an 1800 l/mm grating, a 576 x 400-pixel
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thermoelectric cooled charge-coupled device, and WiRE 3.3 software. The laser light was

focused onto the substrate through a 63X dipping objective (Leica HCX PL APO 1.2NA

Corr/0.17 CS. Spectra were acquired with 37mW of laser power at the sample over a spectral

range of 400-3200 cm−1 with 40 accumulations at an integration time of 10s. Figure 1 shows

the basic setup of RS.

Figure 1: Experimental Setup of Raman Spectroscopy [4].

2.2.2 Dataset

The Raman spectra of the S. pyogenes with water background and other species including

filtered water, MRSA, MSSA strain, Legionella pneumophila, Pseudomonas aeruginosa and

E.coli (K99) were acquired with the method explained in section 2.2.1. The dataset summary

is represented in Table 2.

2.2.3 Statistical Analysis

Pre-processing Raman spectrum is needed for pre-processing before further analysis. Pre-

processing consists of removing cosmic rays, noise, and tissue fluorescence, and normalization

of data. In order to remove fluorescence, different approaches have been proposed. For
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Dataset Biological Species count #
S. pyogenes S. pyogenes 101

Not-S. pyogenes

MRSA 78
MSSA 53
filtered water 29
E. coli (K99) 50
Legionella pneumophila 20
Pseudomonas aeruginosa 8

Total: 339

Table 2: Dataset Summary.

example, a polynomial plot can be approximated to local minima of the spectra [108]. The

background subtraction is based on the florescence-to-signal ratios to minimize the residual

mean square (RMS) error. Such methods attempt to fit the best polynomial fit for each

spectrum. In this section, morphological weighted penalized least squares (MPLS) was used

to remove the baseline [109, 110]. Also, it is possible to use wavelet to remove noise and

smooth the data.

Each spectrum has 1368 samples in the range of 400-2472 cm−1. Next, the data was

min/max normalized to get the values between zero and one. The data was split into

training data (80%) and test data (20%). For cross-validation (CV), the k-fold method is

used where k = 4 [111].

Multivariate Analysis In order to organize relative to intra-spectral similarities, the hierar-

chical cluster analysis (HCA) was performed to the data. HCA is an unsupervised method,

and all mean spectra of the species were fed into the HCA.

Due to high-dimensionality of Raman spectra, PCA was applied to the data, so that

the components with the most variability within dataset would be preserved [112]. It helps
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to condense many samples in each spectrum to only a few variables where these variables

contain at least 95% of the variance. It can reduce the variance by decreasing the complexity

of the models.

Discriminant function analysis (DFA) is a multivariate data analysis technique used for

classification of data. Although Raman Spectra cannot meet the requirements of DFA sta-

tistically [113], this method can be applied to principal components of the spectra.

DFA uses a set of independent variables to predict group membership of each spectrum

given to maximize the separation between groups. The linear discriminant function attempts

to minimize variance within groups and maximize variance between groups [97].

Following PCA, support vector machine (SVM) was used to classify the samples. SVM

is a supervised classifier that provides a maximum margin of separation between classes

[99, 100, 101]. Several kernel functions, including poly, linear, rbf, and sigmoid, were explored

to map the data in a different space. A grid search was conducted on the training dataset

to optimize the values of γ and C. C value is a parameter to control correctly classifying

the samples and the smoothness of the decision boundary where higher C values result in

reducing misclassification error and lower C values result in a smoother decision boundary.

The γ value indicates how far the influence of a single training point reaches such that the

classifier attempts to reach far samples when the γ value is higher.

A decision tree based algorithm, Random Forest, was explored since it has been presented

as a powerful tool to ensemble decision trees [114]. Random Forest bootstraps samples of

the training data and randomly chooses features to build trees. A grid search has been

conducted to select the best model according to the number of trees, cost function and a

minimum number of samples to split.
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Finally, all models were evaluated on a test database where none of the spectra from this

dataset were used in training the corresponding models.

2.3 Result and Discussion

2.3.1 Data visualization

Figure 2 illustrates the mean and standard deviation of raw data which each spectrum

normalized to its corresponding maximum intensity. The background removal of the spec-

tra is an essential step to distinguish S. pyogenes from other species. Figure 3 shows the

background removed spectra of each species using MPLS. Although there is a significant

difference between water and other bacteria, the bacteria have several bands in common.

Nonetheless, the intensity of spectra is various among them.

2.3.2 HCA

The average spectra of each species were fed to the HCA in order to explore the intra-

spectral similarities. Figure 4 illustrates the dendrogram and the corresponding distance

pairs computed by ward method [115]. The plot shows that the spectra can be divided into

two main groups of bacteria and non-Bacteria. Also, it shows that E. coli have a different

spectrum from the rest of the species. The MRSA and MSSA, the two strains of staphylo-

coccus pathogen, are in one subgroup revealing their high similarity P. .aeruginosa spectra

show more similarity to S. pyogenes than the staphylococcus although the P. aeruginosa is a

gram-negative pathogen. Also, the Legionella pneumophila illustrates the highest similarity

to S. pyogenes. It can be concluded that the problem of discriminating the S. pyogenes from

other species in this dataset is not only about the identification of a pathogenic species from

a non-pathogenic species but also about the identification of a specific pathogen from other
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Figure 2: Mean and Standard Deviation of Raw Data Normalized to Maximum Intensity.
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Figure 3: Mean and Standard Deviation of Background Removed Spectra Normalized to
Maximum Intensity.
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pathogenic species with very similar spectra.

Figure 4: Hierarchical Cluster Analysis Performed on Averaged Raman Spectra of Seven
Species used in This Study. The red dot represents the distance between clusters calculated
by ward method. The dendrogram shows a clear separation of the tap water from pathogens.
E.coli is the least similar to S. pyogenes, and the spectrum of Legionella pneumophila and
Pseudomonas aeruginosa is very close to the S. pyogenes. The MRSA and MSSA can be
categorized in one cluster as they are strains of Staphylococcus.

2.3.3 PCA

The principal component analysis (PCA) was applied to the training dataset. PCA

reduces the dimensionality of the spectra from 1368 down to a few linearly uncorrelated

PC scores. Figure 5 shows the cumulative explained variance ratio for the first 10 principal

components. The first two PCs represent 80% of the explained variance, and it can be seen

that after five components the variance changes insignificantly as the first five significant

components preserve 95.89% of the variance. Thus, five first principal components were
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selected to be fed to the classification methods of LDA, QDA, and SVM. Although selecting

a higher number of PCs can decrease the bias, it also results in a high variant model. As

the number of training data is not very large, it is critical to simplifying the model as a

high-variance method is at risk of overfitting to the noise or unrepresentative training data

(e.g., the fluorescent background).

Figure 5: Cumulative Explained Variance Ratio for First 10 Principal Components.

2.3.4 Discriminant Function Analysis

A discriminant function analysis was applied to the PC scores of the dataset to discrimi-

nate S. pyogenes. The linear and quadric discriminant analyses were applied to the training

dataset. The former one assumed the covariance of both groups to be the same while the
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later one considered a different covariance for each group.

LDA The trained LDA classifier correctly classified 70.84% of the training spectra. Cross-

validation was done based on k-fold, where k was 4, and resulted in 69.09% accuracy. The

result reveals that the model is underfitting the data and better approaches need to be

explored. The model was examined on the test dataset, from randomly sampled data and not

used for obtaining model parameters, to test the robustness of the model, It classified 66.17%

of the test spectra correctly. The reduction in the classification accuracy of the test dataset

illustrates that the generalization error of the model is not low and the difference between

cross-validation error and test misclassification error might originate from the sampling error.

In Figure 6, the mapped data on the first two PCs are shown. This plot illustrates the

discrimination function results. It can be seen that some of the spectra were misclassified in

the training dataset. The solid blue corresponds to the S. pyogenes pathogen, and the red

circles correspond to the Not-S. pyogenes species. The circles display two times the standard

deviation for each class. The black dot is the mean value of each class. The misclassified

samples are represented by dark blue and dark red corresponding to S. pyogenes and Not-S.

pyogenes, respectively.

QDA Using QDA, the classification accuracy on training, validation, and test dataset was

78.97%,77.73%, and 76.47%, respectively. The results suggest that the QDA is better than

LDA as its misclassification error is lower. Moreover, there is less over-fitting in QDA

compared to LDA. Nevertheless, QDA is under-fitting the data, and more robust approach

needs to be explored. Figure 7 illustrates the result of applying QDA on two PCs. It can be
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Figure 6: Linear Function Analysis to Discriminate S. pyogenes from Not-S. pyogenes. The
solid blue corresponds to the S. pyogenes pathogen and the red circles correspond to the
Not- S. pyogenes species. The circles display two times the standard deviation for each class.
The black dot is the mean value of each class. The misclassified samples are represented by
dark blue and dark red corresponding to S. pyogenes and Not-S. pyogenes, respectively.

seen that two times the standard deviation is in the shape of ellipsoids as it assumes that

covariance of the classes is different.

2.3.5 SVM

In this subsection, the result of the SVM method on the dataset is presented. As men-

tioned a grid search has been conducted on C, and γ values and usage of the different kernels

are explored. Figure 8 illustrates how the grid search was conducted for each kernel. An ini-

tial logarithmic search on C and γ values were applied, and an area with a better validation

accuracy was selected, and then a fine-tuning was conducted to find the best parameters.
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Figure 7: Quadratic Function Analysis to Discriminate S. pyogenes from Not-S. pyogenes.
The solid blue corresponds to the S. pyogenes pathogen and the red circles correspond to
the Not- S. pyogenes species. The ellipsoids display two times the standard deviation for
each class. The black dot is the mean value of each class. The misclassified samples are
represented by dark blue and dark red corresponding to S. pyogenes and Not-S. pyogenes,
respectively.

Similarly, the best parameters of C and γ for poly and sigmoid kernels was found. The

Figure 9 summarizes the classification accuracy for different kernels. The radial kernel results

in the best classification accuracy with 93.4% and 91.17% accuracy on the validation and test

dataset, respectively. Also, training accuracy is 95.94% revealing the fact that the under-

fitting of the model to the data improved significantly compared to the QDA. The poly kernel

shows the over-fitting to the data as the accuracy is decreased dramatically on the validation

dataset although the training accuracy is the highest one among the other kernels, 97.04%.

The linear and sigmoid kernels are under-fitting to the dataset with a training accuracy of
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Figure 8: Grid Search for Validation Accuracy. a) An initial logarithmic search on C and γ
values where the kernel was ’rbf’ and the 4-fold cross-validation is used. b) The fine-tuning
for 10−4 < γ < 10−2 and 105 < C < 108.

80.44% and 75.27%, respectively.
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Figure 9: SVM Classification Accuracy for Different Kernels.

2.3.6 The Effect of the Number of PCs on the Classification

The number of PCs is usually determined by the variance within the original data each

PC describes. So far, the number of PCs was considered as a fixed parameter in our analyses.

In this section, the effect of selecting a different number of PCs on the classification results

is explored in detail. The number of PCs is one of the leading parameters to control bias

and variance of PCA-LDA, PCA-QDA, and PCA-SVM methods. Also, in SVM algorithms,

the C and γ parameters can control the bias and variance of the model. The dimensionality
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of the training data is an inevitable factor which can affect the model significantly. As it

is desired to improve classification accuracy, it is beneficial to generalize the model as well

such that the proposed model will be more robust to the variations of the spectra due to

noises or other artifacts. The approach mentioned in [116], is used to compute the bias an

variance of the models.

In order to analyze this effect, Gaussian noises with a different signal-to-noise ratio

(SNR), from less noisy (high SNR) to high noisy (low SNR) are aggregated to the dataset.

First, noises are added to all dataset, training and validation set, and bias and variance are

computed for each model. Figure 10, 11, and 12 illustrate the bias and variance of PCA-

LDA, PCA-QDA, and PCA-SVM in terms of the number of PCs respectively where noises

with various SNR are added to all spectra. It can be seen that the fluctuation of bias and

variance is reduced above 14 PCs in PCA-LDA, PCA-QDA, and PCA-SVM. Furthermore,

bias and variance are reduced as the number of PCs is increased. The reduction in bias and

variance simultaneously might indicate that the PCA can model the noise in data such that

the general pattern of the bias and variance of the model is not changed although they are

higher for lower SNR.

Secondly, noises with various SNR are only added to the validation set in order to un-

derstand if these methods can predict spectra correctly where there is some aberration in

the spectra. Thus, the bias and variance of the models are calculated for a different number

of PCs. Figure 13, 14, and 15 reveals that there is a trade-off between bias and variance for

SNR=1, 10dB (highly noised data) above 14 PCs for PCA-LDA and PCA-SVM and above

22 PCs for PCA-QDA, whereas for SNR above 20dB, the bias and variance remain constant.

Thus, the PCA-based models have high ability to predict the spectra correctly where the
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Figure 10: Bias and Variance of PCA-LDA in Terms of Number of PCs Where Gaussian
Noises Are Added to All Spectra
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Figure 11: Bias and Variance of PCA-QDA in Terms of Number of PCs Where Gaussian
Noises Are Added to All Spectra
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Figure 12: Bias and Variance of PCA-SVM in Terms of Number of PCs Where Gaussian
Noises Are Added to All Spectra
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testing or validation dataset has less variation from the original dataset. Also, it is notable

that above 22 PCs a trade-off can be seen clearly in the PCA-QDA plot. However, the bias

decreases for PCs above 6 until 14 and increases for PCs above 14. The variance increases

drastically around 6 PCs and stays constant for PCs above that until the number of PCs

reaches to around 22 PCs. It suggests that a selection of around 6 or 22 PCs would be good.

Furthermore, Figure 15 indicates that there is less variation of bias and variance for

PCA-SVM above 5 principal components until 14 principal components. It suggests that

any selection of PCs from 5 to 14 has a similar effect on variance and bias. Nevertheless,

the model with a lower number of PCs has less complexity.

Consequently, the bias-variance analysis of the PCA-based model can reveal the signifi-

cant amount of information where only relying on the contribution of each PCs within the

variance of the data might be misleading as the overall performance of a well-trained model

can drastically be reduced by increasing the complexity of the model.

In addition, the results suggest that the accuracy of these algorithms can be improved

by selecting the optimal number of PCs such that there is less overfitting or underfitting to

the data.

2.3.7 Random Forest

The Random Forest method is applied on the wavenumber of the spectra where the

training of trees used bootstrap aggregating or bagging. A grid search explores the number

of trees or estimators in addition to a number of features or wavenumber used for training

of each tree.

Figure the 16 shows the average 4-Fold cross-validation error for the various choices of

the number of trees and descriptors. The ensemble of 25 trees with 5 descriptors resulted
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Figure 13: Bias and Variance of PCA-LDA in Terms of Number of PCs Where Gaussian
Noises Are Added to the Validation Set
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Figure 14: Bias and Variance of PCA-QDA in Terms of Number of PCs Where Gaussian
Noises Are Added to the Validation Set
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Figure 15: Bias and Variance of PCA-SVM in Terms of Number of PCs Where Gaussian
Noises Are Added to the Validation Set
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in the best cross-validation accuracy of 94.46%. Training accuracy was 100.00% suggesting

that there is no under-fitting of the model to the dataset. It also illustrates that the number

of descriptors is the primary parameter to tune the Random Forest performance once there

is a sufficient number of trees (around 15).

The usage of different cost functions or changing minimum node size does not affect the

result significantly where the best parameters for a number of estimators and descriptors are

set. The default value of 1 for minimum node size is chosen in this study. Hence, the trees

were grown to their maximum size.

2.3.8 Comparative Result

In this section, the result of different methods on the testing dataset is studied. Table 4

shows the results of the testing dataset. The Random Forest algorithm showed the highest

classification accuracy on the test dataset compared to the other method. SVM has higher

accuracy compared to the QDA and LDA, and it can be concluded that SVM is the best

candidate where the PCA is used to reduce the dimensionality of the spectra. However, the

Random Forest showed that randomly choosing wavenumber can result in better accuracy

on the test dataset, and it helps to generalize the algorithm for the more extensive or various

data. QDA showed a better accuracy compared to LDA, revealing that the assumption of

the same covariance for both classes is not correct and the nonlinear kernel can result in a

better model when the complexity of the dataset is increased.

The ROC of the different methods is plotted in Figure 17 to explore the sensitivity

and specificity of the models. The Random Forest shows the best area under the curve of

0.997 compared to the other methods, and its ROC is above the ROC of the others for all

thresholds. It indicates the Random Forest is the best approach for pathogen identification
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Figure 16: Grid Search on Average 4-Fold Cross-Validation Accuracy. 25 trees with 5 de-
scriptors are the best parameter of Random Forest result in 94.46% accuracy.

Methods Accuracy %
Random Forest 94.11
PCA-rbf-SVM 91.17
PCA-linear-SVM 73.52
PCA-poly-SVM 89.70
PCA-sigmoid-SVM 60.29
PCA-LDA 66.17
PCA-QDA 76.47

Table 4: Classification Accuracy on Testing Dataset.
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Figure 17: ROC of Random Forest, Gaussian SVM, linear SVM, LDA, and QDA on the
Common Test Set. Random Forest with an area under the curve of 0.997 results in the best
method to identify S. pyogenes in terms of specificity and sensitivity.
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among other techniques. The ROC of the QDA and rbf SVM are similar although rbf kernel

is slightly better that QDA. The ROC of the LDA and linear SVM are very close to each

other. Nevertheless, they are below the ROC of QDA and rbf-SVM. It indicates that a

nonlinear approach is better than a linear one. It can be concluded that Random Forest

which uses bagging and random feature selection to grow trees is a robust approach regarding

sensitivity and specificity.
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CHAPTER 3 REAL-TIME DEEP LEARNING APPROACH FOR
PATHOGEN IDENTIFICATION USING RAMAN SPECTROSCOPY:

IDENTIFICATION OF S. PYOGENES

3.1 Introduction

Raman spectroscopy (RS) has been widely used as a non-destructive tool to character-

ize chemical or biomedical samples. It can provide a structural fingerprint by identifying

molecules using their specific vibration modes. RS has been applied in bacteria charac-

terization as a rapid technique to discriminate pathogens by studying the modifications of

biomolecules inside the cell. However, some issues remain in regards to utilizing RS to

identify pathogens in real-time.

RS is a weak signal with a noise superimposed on a broad background. Removing this

background noise is tedious work and usually needs direct supervision of an expert. Although

during the last decades various studies have attempted to remove this background using

multiple techniques including polynomial fit and morphology [117, 118, 119, 120, 121, 122,

108], these methods have not been efficient and usually need fine-tuning of some parameters.

This issue prohibits them to be a candidate for a real-time detection or identification system.

Bacteria have the same structure and share similar macromolecules in their cell and

membrane. Also, each bacteria is composed of various molecules and macromolecules which

have significant bands in common. There are four central macromolecules in a bacteria cell.

Proteins are polymers of amino acids, and they are one of the primary macromolecule

structures in the bacteria spectra. Amino acids differ by their side chain, and the Raman

spectra bands of proteins are divided into three dominant groups. The amide I band includes

80 % C=O stretch, and its band is close to 1650 cm−1. The amide II band is nearly 1550
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cm−1 and consists of 60% N-H bend, δ(N-H), and 40% C-N stretch, ν(N-C). The amide III

band is around 1300 cm−1 and includes 30% N-H bend, δ(N-H), 40% C-N stretch, ν(N-C)

, and skeleton stretches [1]. Other critical spectral features in protein spectra are Disul-

phide Bridges (S-S bonds) and Aromatic amino acids (Phenylalanine, tryptophan, tyrosine,

histidine).

The primary structure of the cell membrane consists of lipids. Various lipids can be

found in bacteria cell membrane and have been used for bacteria identification [123]. The

leading bands of saturated fatty acids are at 1295 cm−1 and 1440-1460 cm−1 attributed to

CH2 deformations, and 1030-1130 cm−1 assigned for C-C stretching vibration. The influential

band of unsaturated fatty acids is lipids 1658 cm−1 attributed to C=C stretching [124].

Polysaccharides are the main component of the cell capsule, and lipopolysaccharide (LPS)

is used to identify gram-negative bacteria [125]. Polysaccharides are made of different sugar

monomers [126]. Also, the genetic information of the cell is represented by the sequence

of the nucleotides in the nucleic acids. Nucleotides consist of a base linked to sugar by a

glycosidic linkage and phosphate. Some of the bands associated with these macromolecules

are summarized in Table 1.

Some studies have attempted to investigate the signature of some bacteria and identify

some critical bands, and some other reviews have applied machine learning methods to

discriminate different bacteria [127, 128, 129, 130]. Recently, methods based on deep learning

have become very popular in supervised learning as it has been shown that deep learning is

a robust and fast technique, and its accuracy has not reduced when the dataset is growing

[131, 132, 133, 75].

Artificial Neural Networks (ANN) have been applied to bacteria identification studies
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using vibrational spectroscopic methods. In [134], ANN is utilized to identify Enterococcus

faecium with IR where neurons were the principal components of the spectra. Nevertheless,

the application of neural network for spectra analysis remained dormant as the other methods

overwhelmed the ANN. Also, as mentioned in Section 1.3 of Chapter 1, the addition of layers

to the neural network can lead to exploding or diminishing gradient. In recent years, there

has been a large number of various algorithms to improve the performance of the deep neural

network and make it one of the most attractive methods for classification, regression, and

machine learning.

In this paper, a new technique based on deep learning is presented to discriminate Strep-

tococcus pyogenes using RS. This method is an end-to-end identification technique which

does not require any pre-processing on the data, and as a result, identifies species rapidly.

A deep neural network is trained such that it can estimate the background and subtract

it from raw data, and another deep neural network is trained by considering the particular

wavenumber of the spectra based on the biochemistry of macromolecules inside bacteria.

The accuracy, sensitivity, and specificity of this method are 100%. We analyzed the per-

formance of the aforementioned method on the dataset used in Chapter 2 to identify the S.

pyogenes. It is worth noting that this dataset provides a representative, but not exhaustive,

pathogen spectra. The objective here is to provide an end-to-end algorithm and unique deep

neural architecture to discriminate pathogens, in particular S. pyogenes.

3.2 Material and Method

3.2.1 Dataset

We used the same dataset that was explained in section 2.2.2.
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3.2.2 Input

After each spectrum was acquired, it was normalized to its maximum intensity. Following

the normalization, 339 of total spectra were grouped into two separate datasets and divided

randomly into three groups of training, validation, and testing dataset. Additionally, each

spectrum was pre-processed and added to each group where it belonged. 60% of the data

was used for training, 20% for validation, and 20% for testing.

We used x = (x1, x2, ..., xn) as an input where each band was considered as a neuron in

the input. We limited each spectrum to a certain range from 400 to 2472 cm−1 and a fixed

length, ∣X ∣ = 1368. As our RS system could acquire the spectrum from 400 to 3200 cm−1,

each spectrum is truncated to the desired length. Given Nt as the sample size of the training

set, the input is represented as a 2-D array with size of Nt × ∣X ∣. The Theano toolbox [135]

is used to implement the deep neural network.

3.2.3 Overview of the Model

The pipeline of simultaneous identification of Streptococcus pyogenes is comprised of

three units as illustrated in Figure 18 : a real-time pre-processing unit based on convolution

and deconvolution networks, a rearrangement unit based on prior knowledge of spectra

biological macromolecules , and a real-time identification unit based on CNN [136, 64] and

partially connected neural network (PCNN) [137, 138]. Firstly, the pre-processing unit is

employed for background removal of the spectra using the raw spectra from RS. Then, the

known spectral peaks of macromolecules inside the bacteria are used to generate a tensor from

the pre-processed spectra. Finally, an identification unit is employed for feature generation

and classification.
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Figure 18: Overview of the Model.

Pre-processing Unit We have developed a deep neural network for real-time background

removal of spectra. It is based on a Conv-DeConv network which is trained using raw

spectral data as input, and the corresponding background removed spectra with the MPLS

method as outputs [109, 110]. It is a real-time method which takes raw data as input, x,

and generates the background removed spectra, z.

Figure 19 illustrates the architecture of the network. The whole network consists of 4

modules which are connected sequentially where raw spectra are input for the first module.

Figure 19: Architecture of the Pre-processing Network.

The first module contains convolution layers with a filter size of fp1 = 71 and 16 feature

maps are constructed for the first layer,κp1 = 16, and the output is padded with zero to have
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the same size of input. The second layer is a convolution layer with the same filter size

and κp2 = 32 feature maps, and the output is padded with zero again. The second layer is

followed by a sub-sampling layer, max-pool, with a pool size of 3 and stride of 1.

The second module is similar to the first module with a difference in filter size that is

fp2 = 101, and both kernel sizes are equal to κp2 = 32. Also, there is no sub-sampling in this

module.

The third module consists of deconvolution layers where the weights of the deconvolution

layers are based on the weights of the convolution layers in the second module. The number

of output kernels of the deconvolution layer is equal to the number of input kernels of the

corresponding convolution layer. In same fashion, the input kernels of the deconvolution layer

correspond to the output kernel of the convolution layer. Also, the weight of deconvolution

filter is reversed as the operation order is reversed.

The fourth module is based on the weights of the first module. The first layer is an

up-sampling layer based on the sub-sampling layer, which it assigns the same value for the

indices on which the subsample filter is employed. Following the reverse of the sub-sampling

layer, there is another deconvolution layer based on the weights of the second layer of the

first module. The last layer is a deconvolution layer with the same filter size and number

of the kernel of the first layer in the first module. The output kernel is 1 which yields the

background of spectra. However, the parameters of this layer vary, and it is not constrained

by the first layer in the first module. In other words, this layer can be learned independently.

The sigmoid activation function is employed on the output of the last deconvolution layer.

The goal is to minimize the mean of the least square root between the output of the network

and background of spectra obtained using the MPLS method with direct supervision and
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validation of an expert on the raw spectra.

This network is capable of generating features from raw data that can ultimately estimate

the background of the Raman spectra. Finally, the output of the last layer is subtracted

from the input signal x to construct the background removed spectra, z.

To train the pre-processing network, raw spectra are used as inputs, and the correspond-

ing background removed spectra are used as outputs. The objective function was to minimize

the mean square error (MMSE) on outputs and the stochastic gradient descent method was

used to update parameters of the network. The learning rate was 0.001, and the network is

trained for 10000 epoch where the earliest and best validation error is used to determine the

optimal hyper-parameters of the net.

Rearrangement Unit We used a rearrangement scheme which maps the pre-processed spec-

tra z to known peaks of biological macromolecules Ψ = (Ψ1,Ψ2, ...,Ψλ) where ∣Ψ∣ = 60 in

our scheme. We used the reference database of biological molecules that is described in

[89]. A macromolecule consists of known bands which are unique for that macromolecule,

Ψj = (ξ1, ξ2, ..., ξk) where the number of bands, ∣Ψj ∣, can be different for each macromolecule.

The bands associated with the macromolecule vary in strength and might have a small shift

depending on the spectroscopy system from which they are obtained. Nevertheless, all the

bands involved in specifying the macromolecule are considered in our scheme. Additionally,

a neighborhood window with width w of each band is chosen where the desired band is in

the middle of the window. In other words, ξi = (..., ξi,−2, ξi,−1, ξi,0, ξi,1, ξi,2, ...) where ∣ξi∣ = w.

Finally, all of these bands are combined to generate a tensor with the shape of Nt ×NΨ × ∣ξ∣,

where NΨ = ∑∣Ψ∣j=1 ∣Ψj ∣. This tensor γ is a representation of the pre-processed spectra z on the
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known bands of macromolecules.

Identification Unit Our neural network employed two layers of CNN followed by a PCNN.

Figure 20 shows the architecture of the network for the identification unit.

1. Convolutional Neural Networks: This network aims at generating feature from the local

information of each band. It takes the tensor γ, rearranged tensor from pre-processed

data z, as input and convolutes the ∣ξ∣- axis of γ with a set of kernels. The number of

filters for the first layer is κ1 = 10 and κ2 = 5 for the second layer. The kernel size for

the first layer is 2 and w − 1 for the second layer. As a result, the output shape of the

CNN becomes Nt ×NΨ × κ2 × 1.

2. Partially Connected Neural Network: PCNN, following CNNs, connected the generated

features of bands associated with the corresponding macromolecule. A nonontogenic

method was used for reduction of the connections as the input-output relationship

is known for this case [139, 140, 141, 142]. The hyperbolic tangent is applied to the

output as an activation function, and the shape of the output tensor is Nt×NΨ. Finally,

the output of this layer is connected to a logistic regression classifier with two nodes

in the output.

The output of the pre-processing unit was fed to the rearrangement unit. After the

spectra were rearranged, the identification network was trained by minimizing the negative

log-likelihood (NLL) of the output of the logistic regression classifier on unseen samples as

the zero-one loss is not differentiable. The stochastic gradient descent method was used

to update the parameters of the identification network where the parameters of the pre-
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Figure 20: Architecture of the Identification Network.

processing unit were frozen during training identification unit. The epoch of training was

set to 10000 such that the network explored the possible optimal points. Nevertheless, the

validation score and cost were calculated at the end of each epoch, and the best and earliest

one was considered as the optimal one.

3.3 Result and Discussion

In this chapter, a deep learning approach is used to generate the features automatically.

The result of this approach is presented when it is applied to the dataset explained in
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section 2.2.2. This dataset includes different bacteria in the water background and contains

339 raw spectra and their corresponding pre-processed spectra which are divided into three

sets of training (80%), validation (20%), and testing dataset (20%). The model was trained

by using training dataset and validated during training by validation dataset. Eventually,

the model was tested by feeding the testing database to the network, and further analyses

such as specificity and sensitivity were performed to evaluate the model. The result of

the pre-processing unit is reported and compared with the ground-truth data. Finally,

the performance of the model is compared with the state-of-art machine learning approach

presented in Chapter 2.

3.3.1 Pre-processing Unit

In this section, the output of the pre-processing unit is presented. Fig. 21 and 22 show

the output of pre-processing unit which is applied on raw spectra. It can be seen that this

unit is capable of predicting the ground-truth spectra very closely, and in each plot it can be

seen that the predicted spectrum matches the ground-truth spectrum in almost all bands.

Figure 23 illustrates the mean and standard deviation of predicted and ground-truth

spectra of S. pyogenes data. It can be seen that the standard deviation of the predicted

spectra is similar to the standard deviation of the ground-truth spectra. The means of both

plots are in better agreement with each other when their standard deviations are small.

Nevertheless, the fluctuation pattern of the peaks in both plots, predicted and ground-truth,

are similar.

3.3.2 Classification Result

The misclassification error, specificity, and sensitivity are evaluated on all three datasets

in the end, and the result is illustrated in Table 5.
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,

Figure 21: Output of Pre-processing Unit Applied to Raw Spectrum of pathogen. It can be
seen that pre-processing unit can estimate the ground-truth spectrum very firmly in almost
all bands.

After training the network on both S. pyogenes and other spectra, the network was tested

on a test database, and accuracy of 100% for the test dataset was achieved. Sensitivity was

100%, and specificity was 100% as well.

The error for the training and validation sample were computed by feeding the input of
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Figure 22: Output of Pre-processing Unit Applied to Raw Spectrum of Water.

the trained network with each spectrum in the database where it was 0%. In other words,

there was no misclassification during training.

Additionally, for the Receiver Operating Characteristic, ROC, the curve is plotted for

three datasets in Figure 24. The ROC provides a comparison of two operating characteristics,

true positive rate (TPR) against the false positive rate (FPR). The results suggest our
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Figure 23: Output of Preprocessed Unit for S. pyogenes Data. The mean and standard
deviation of predicted and ground-truth pre-processed spectra are plotted in blue and green,
respectively.



www.manaraa.com

59

Dataset Error Sensitivity or true posi-
tive rate

Specificity or true nega-
tive rate

Training 0% 100% 100%

Validation 0% 100% 100%

Testing 0% 100% 100%

Table 5: Classification Result on Training, Validation, and Testing Dataset.

model provides the optimal solution to distinguish S. pyogenes from other species in a water

background.

As the error was 0% in each training, validation, and testing dataset, it suggested that

the model is not over-fitting or under-fitting the result. Although our dataset was restricted

to the limited number of pathogens, this model can be exploited to identify the pathogens

using RS which can be achieved by fine-tuning the hyper-parameters or adding and training

additional layers or kernels for the feature extraction unit. Moreover, the proposed model

can be trained using a custom set of wavenumbers which suggests a great opportunity to

embed the biological knowledge to such model which is data driven.

3.3.3 Comparative Result

In order to address the performance of the proposed model, the results produced by our

approach are compared to other machine learning methods such as SVM and Random Forest.

This study has been done on the same dataset, and it is discussed in detail in Chapter 2.

Table 6 shows the summary of the results. It is noticeable that our approach, Deep Pathogen

Identification Neural Network (DPINN) achieves the best result according to classification

error, sensitivity, specificity, and F1 score. Furthermore, the PCA-LDA, PCA-QDA, and

PCA-SVM (linear) have a very low sensitivity which makes them an unsuitable choice to be

used for spectra analyses and classification. The specificity of the SVM with rbf kernel and
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Figure 24: ROC of Training, Validation, and Testing Dataset.

the Random Forest is similar; however, Random Forest results in better sensitivity and F1

score.
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Method Error Specificity Sensitivity F1
PCA-LDA 33.82% 81.25% 30.00% 0.343

PCA-QDA 23.53% 95.83% 30.00% 0.429

PCA-SVM(linear) 26.48% 85.42% 50.00% 0.710

PCA-SVM(rbf) 8.83% 97.92% 70.00% 0.800

Random Forest 5.89% 97.92% 85.00% 0.895

DPINN 0.00% 100.00% 100.00% 1.000

Table 6: Result on the Benchmark Dataset with Water Background. The proposed approach
(DPINN) achieves the lowest error and the highest sensitivity, specificity, and F1 score among
others.
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CHAPTER 4 IDENTIFICATION OF STREPTOCOCCUS PYOGENES
IN CONFOUNDING BACKGROUND USING RAMAN

SPECTROSCOPY

4.1 Introduction

In Chapter 3, it has been shown that a deep neural network is a robust method to identify

S. pyogenes in water background. However, in real clinical use, a test on S. pyogenes involving

a swab from the throat of a patient introduced a new challenge in identifying the bacteria in

confounding background. The swab might comprise other chemical components depending

on the patient or test conditions leading to the contribution of various backgrounds in the

Raman spectra of the sample. As a result, the acquired spectra were composed of not only

the molecular fingerprint of the bacteria but also the background bands and baseline of the

sample.

Raman spectra is a representation of molecular vibrations of different molecules, and

each band can be assigned to different molecular structures of cell or background macro-

molecules. The spectra of bacteria acquired in media such as water whose spectra is known

are unique and represent molecular vibrations of different molecules inside the cell. When

media is changed, or the spectra are acquired in confounding background, the molecular

vibration of macromolecules inside the bacteria alters slightly. Moreover, the molecules in

confounding background vibrate and thus contribute in the acquired spectra. As a confound-

ing background might have similar fragments of bacteria, it can modify the obtained spectra

significantly.

In Chapter 3, a deep learning method based on known spectra of some macromolecules is

studied and has been shown that this method can be used to discriminate S. pyogenes from
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other selected bacteria and also from water. In this paper, we aim at training a deep neural

network to identify S. pyogenes in the confounding background using Raman Spectroscopy

(RS). This method is shown to be robust to the modification of background and can be used

in clinical application as a rapid identification technique to identify S. pyogenes.

4.2 Material and Method

4.2.1 Instrumentation and Sample Preparation

The instrumentation for data acquisition was the same Renishaw system described in

section 2.2.1. Furthermore, the preparation of samples with water background and also

pathogen culture were described in detail in section 2.2.1 .

The protocol for samples with throat swab background was as follows: The subjects were

examined to make sure they had not used mouthwash or antibiotics and also that there

was no sign of redness, swelling and especially white streaks or pus in their throat. Then

with the use of a sterile cotton swab, the back of the throat (posterior pharynx) and both

tonsils (tonsillar arches) were stroked several times. The swab was placed in a sterile 1.5 mL

Eppendorf container. The swab was agitated in a tube with 0.4 mL of filtered sterilized tap

water and then put in Nanofuge for 2 seconds. Finally, the swab was removed from the tube

and prepared for testing and pathogen spike. To spike, the sample with a pathogen, the tube

of the pathogen in filtered tap water, with final optical density (measured at a wavelength of

600 nm) of the 1.00 ± 0 .05, was pipetted into the prepared throat swab sample and mixed

appropriately.
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4.2.2 Dataset

The spectra were acquired in two different backgrounds: water background and confound

background (throat swab). The water background dataset was the same dataset used for

Chapter 2 and explained in detail in Section 2.2.2. The confounding dataset consists of the

throat swab background, S. pyogenes with throat swab background, and P. aeruginosa with

throat swab background spectra. The total dataset is illustrated in Table 7.

Dataset background Biological Species count #

S. pyogenes water S. pyogenes 101
Throat swab S. pyogenes 110

Not-S. pyogenes

water MRSA 78
water MSSA 53
water E. coli (K99) 50
water Legionella Pneumophila 20
water Pseudomonas aeruginosa 8
water filtered water 29
Throat swab Pseudomonas aeruginosa 107
Throat swab Throat swab 117

Total: 673

Table 7: Dataset Summary with Confounding Background
.

4.2.3 Input

In similar fashion of Chapter 3, the spectra are normalized to their maximum intensity

and cropped to a range of 400-2472 cm−1 with a fixed length, ∣X ∣ = 1368. The dataset

is grouped into three datasets of training, validation, and testing dataset. Also, the pre-

processed spectra are accumulated in each dataset.

We used x as an input where each band was considered as a neuron in the input. Thus,

the input is a two-dimensional array with size of (Nt × ∣X ∣) where Nt is the sample size. The

implementation of the deep neural network was done using the Theano framework [135].
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4.2.4 Model

The network architecture is similar to the one explained in detail in Section 3.2.3. It

consists of three units of pre-processing, rearrangement, and identification units.

The pre-processing unit takes raw data as input, x, and produces the background re-

moved spectra, z. The whole network consists of 6 modules compared to 4 modules used

in Chapter 3. The first and last two modules are similar, and another module based on the

convolution network is added at the end of module 2, and subsequently, another module

based on deconvolution network is inserted where its output is connected to the input of

module 3.

The networks are trained similarly as explained in Chapter 3. The stochastic gradient

descent is used to update the parameters and the earliest and best validation error is used

to determine the optimal hyper-parameters of the network.

4.3 Result and Discussion

In this section, the classification result is presented on the confounding background

dataset illustrated in section 4.2.2. This dataset consists of the raw spectra of the different

pathogens with a different background. Also, their pre-processed spectra are augmented on

the dataset. This dataset is randomly split into three sets: training (80%), validation (20%),

and testing (20%).

4.3.1 Data visualization

In Chapter 3, the raw and pre-processed spectra acquired in water background has been

illustrated. The mean and standard deviation of raw and pre-processed spectra of S. pyogenes

and P. aeruginosa acquired in throat swab background as well as only throat swab background
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Dataset Error Sensitivity or true posi-
tive rate

Specificity or true nega-
tive rate

Train 0.37% 100.0% 99.46%

Validation 4.07% 98.84% 94.57%

Test 3.70% 94.44% 97.22%

Table 8: Classification Results on Training, Validation, and Testing Dataset.

are shown in Figures 25 and 26, respectively. The spectra are normalized to their maximum

intensity. It can be noted that there is a strong baseline in this background compared to the

water background and that it is essential to remove this baseline before data analysis. Also,

the S. pyogenes and P. aeruginosa have similar peaks and pattern and also that the spectra

of the throat swab have identical peaks in common with both pathogens.

A deep learning approach is presented in Chapter 3 as a robust method to distinguish

the pathogens in water background. In this chapter we have applied this method on the con-

founding background dataset by extending some layers and tweaking some hyper-parameters

of the networks as explained in section 4.2.4.

4.3.2 Training Result

Table 8 illustrates the results of the misclassification error of three datasets of training,

validation, and testing.

The results show that the training error is around 0.37%. Thus, the model is not un-

derfitting to the training dataset. The validation error is slightly above the training error.

Nevertheless, this difference is insignificant such that there is no overfitting of the model to

the training dataset. The testing error is 3.70%, and this error is similar to the validation

set indicating the minimal difference between data distribution of the testing and validation

dataset. Figure 27 illustrates one of the S. pyogenes spectra which is misclassified as Not-S.



www.manaraa.com

67

Figure 25: Mean and Standard Deviation of Raw Data Acquired Using Throat Swab Nor-
malized to Maximum Intensity.



www.manaraa.com

68

Figure 26: Mean and Standard Deviation of Background Removed Spectra Acquired Using
Throat Swab Normalized to Maximum Intensity.
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Figure 27: Misclassified Sample. S. pyogenes Spectra Classified as Not-S. pyogenes.

pyogenes (False negative). It can be seen that there are differences between this spectrum

and S. pyogenes (mean and standard deviation) where there is a similarity in pattern and

intensity of the spectra with P. aeruginosa in some of the major bands, such as bands around

1400−1500. In other words, the intensity of such spectrum is not in the range of the standard

deviation of S. pyogenes spectra but rather that of P. aeruginosa.
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The ROC curve is plotted for three datasets in Figure 28. The ROC curve suggests

that the best sensitivity and specificity score can be achieved using the threshold 0.35. The

area under the curve (AUC) of training, validation, and testing dataset are 1, 1, and 0.99,

respectively, revealing that there is a balance between the complexity and generalization of

the model.

4.3.3 Realization of the Network: Macromolecules

The network is designed such that the features from each individual macromolecule can be

extracted, and then the classifier distinguishes the sample based on the partially connected

networks of different macromolecules. The study of this partially connected network for

each macromolecule can yield an understanding of the trained network. For this purpose,

the weights for a macromolecule network were set as trained weights, whereas for others, they

were set to zero. Then, the dataset feed to this network and the mean probability for both

groups were calculated. In this fashion, this process is repeated for every macromolecule.

In Figure 29, the probabilities of true positive and true negative for all macromolecules

are illustrated. It can be seen that b-carotene, d-arabinose, d-fucose, and d-mannose have

the highest probability for accurate detection of positive samples and the l-histidine and

amylopectin yield the highest true negative rates.

It is possible that a macromolecule can yield a correct identification for a positive dataset

along with a false detection for the other dataset. Figure 30, shows the mean probability

of the network when the S. pyogenes dataset was fed to it. The blue bars indicate the

likelihood of the true detections and green bars shows the likelihood of the false detections

(false negative) ones. It can be seen that adenine and d-xylose have the highest probability of

false negative rates, above 0.65. These macromolecules might be responsible for the reduction
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Figure 28: ROC of three datasets. The AUC of each ROC is illustrated in the plot.
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Figure 29: Result of True Negative and True Positive on All Macromolecules Participating
in the Network. b-carotene, d-arabinose, d-fucose, and d-mannose have probability above
75% for accurate detection of S. pyogenes spectra and the l-histidine and amylopectin with a
likelihood above 75% to be responsible for correct identification of Not-S. pyogenes spectra.
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of the sensitivity of the model.

Figure 30: Result of True Positive and False Negative on All Macromolecules Participating
in the Network. Adenine and d-xylose have the highest probability of false negative rates,
above 0.65.

Similarly, Figure 31 shows the mean probability of the network when the Not-S. pyogenes

dataset feeds to the network. It can be noted that b-carotene with a probability of 0.68 is the

strongest macromolecule which contributed to the false positive rate. It can be concluded

that this macromolecule reduces the specificity of the network.

Table 10 illustrates the mean probability of the macromolecules from which an accurate

identification with a probability above 0.65 can be yielded. For each macromolecule, four

probabilities are calculated where two different datasets of S. pyogenes and Not-S. pyogenes

were the inputs of the network. As a result, the false positive rate and false negative rate in
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Figure 31: Result of True Negative and False Positive on All Macromolecules participat-
ing in the Network. b-carotene with a probability of 0.68 is the strongest macromolecule
contributed to false positive rate.

addition to true positive rate and true negative rate can be computed to understand which

macromolecules can lead to the correct identification of negative or positive samples and

which ones can be the reasons for the false negative or false positive detections.

It can be seen that b-carotene has a high probability of true positive and also false positive

rates. Thus, a network of this macromolecule is not trained well to discriminate some of the

samples which are not S. pyogenes from S. pyogenes samples. It can be concluded that

the precision of the overall network can be affected by this macromolecule network. It also

affects the specificity of the network as the b-carotene network tends to result positively,

independent of the incoming spectra.
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Not-S.
pyogenes-
False S.
pyogenes

Not-S.
pyogenes-
True Not-S.
pyogenes

S. pyogenes-
True S. pyo-
genes

S. pyogenes-
False Not-S.
pyogenes

Amino acids l-histidine 0.239312 0.760688 0.413524 0.586476
Amino acids l-tyrosine 0.589092 0.410908 0.719055 0.280945
DNA and RNA bases ade-
nine

0.298337 0.701663 0.309394 0.690606

Others b-carotene 0.681207 0.318793 0.770675 0.229325
saccharides amylopectin 0.227511 0.772489 0.580468 0.419532
saccharides cellulose 0.386449 0.613551 0.717649 0.282351
saccharides d-arabinose 0.494961 0.505039 0.802654 0.197346
saccharides d-fucose 0.584357 0.415643 0.801040 0.198960
saccharides d-mannose 0.522542 0.477458 0.780666 0.219334
saccharides d-trehalose 0.254268 0.745732 0.421229 0.578771
saccharides d-xylose 0.287641 0.712359 0.325485 0.674515

Table 10: Mean Probability of Macromolecules from Which an accurate identification with
a probability above 0.65 can be yielded.

Adenine and d-xylose are the macromolecules which yield not only the high false negative

rates but also high true negative rates that affects the recall or sensitivity of the network

as this network is less sensitive to the incoming spectra and tends to have negative results

for both S. pyogenes and Not-S. pyogenes. So these macromolecules cannot identify S.

pyogenes samples from Not-S. pyogenes samples accurately. In other words, they have very

low sensitivity and can decrease the overall sensitivity of the network.

In summary, it can be concluded that the l-tyrosine, cellulose, d-arabinose,d-fucose, and

d-mannose can yield the detection of the positive sample with the highest probability and the

l-histidine, amylopectin, and d-trehalose are responsible for true negative rates. Although

the realization of the network can help to understand the network and potentially help to
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design a robust one, it cannot guarantee the result will wholeheartedly concur with the

biological understanding of the pathogens. In other words, the network is trained based on

the data it has received. As a result, a more extensive dataset that includes different species

might yield a trained network close to the bacterial structure.
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CHAPTER 5 CONCLUSION AND FUTURE WORKS

5.1 Conclusion

In this study, we aimed at identifying S. pyogenes from other species using Raman Spec-

troscopy. The various multivariate algorithms including PCA-LDA, PCA-QDA, SVM, and

Random Forest have been applied to the dataset where the background was filtered water.

The different metrics including classification accuracy, specificity, sensitivity, and area un-

der the curve (AUC) of the ROC were computed, and their performances were summarized

in Chapter 2. It has been shown that Random Forest results in the best performance in

terms of AUC of ROC and misclassification error. Also, the SVM with ’rbf’ kernel and

PCA-QDA using nonlinear kernel trick had a better performance than the linear methods

such as PCA-LDA and linear PCA-SVM. This suggests that usage of linear methods is not

the best approach when the dataset has high complexity.

In Chapter 3, a unique end-to-end deep neural network architecture was introduced to

identify S. pyogenes. As current methods of analyzing Raman spectra are based on pre-

processing methods composed of removing the fluorescent background, a multilayer neural

network is introduced for training on raw and pre-processed spectra, acquired by an expert.

Then, known bands of different biological macromolecules are embedded in the network to

enable network learning from pre-known bands or wavenumbers. Hence, the identification

network was presented and trained on the same dataset used in the previous chapter. This

unique deep neural network resulted in the best classification error, 0%, and showed that

using deep learning methods can achieve higher performance than using traditional classifi-

cation methods used in Chapter 2.
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In Chapter 4, in order to reach one step closer to generalize our approach for clinical ap-

plications, we determined to apply the proposed method presented in Chapter 3 to a dataset

with confounding background acquired in two different media: the water and throat swab

background. The confounding background has higher complexity than the water background

in terms of fluorescent background and variation of the patterns of the species. The former

affects the performance of the pre-processing units, and the latter one affects the performance

of the identification network. Nevertheless, the proposed networks were trained using this

dataset, and the results were illustrated. It was concluded that the misclassification error

for test dataset was 3.7% . Furthermore, the realization of the identification network was

presented to provide a better understating of the use of the bands of the known macro-

molecules in the network. For this purpose, each macromolecule was considered individually

to determine its contribution to the true and false detections for positive and negative sam-

ples. It was shown that some macromolecules result in higher probability than others. These

findings were summarized in Table 10.

In conclusion, this dissertation has attempted to contribute to identifying pathogens using

Raman Spectroscopy by introducing and justifying new methods to improve state-of-the-art

in the analysis of Raman spectra.

5.2 Future Works

In conclusion to Chapters 2 through 4, it would be valuable to discuss and provide possible

extensions and future directions. As discussed, this dissertation was restricted to a dataset

with a limited number of pathogens due to time and the expensive labor process of data

acquisition. We have attempted to abate this issue by choosing various ranges of pathogens
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which have a similar characteristic to S. pyogenes. Notwithstanding, it is my hope that the

proposed technique will continue to be tested on new pathogens and also various strains of

pathogens and will perhaps inspire new research toward more efficient and generalized deep

neural networks to identify pathogens using Raman spectroscopy and background removal

of spectra.

There is a potential for vast applications of real-time identification of pathogens in the

clinical and biological arena. One such application could be identifying particular pathogens

in food, water, blood, and mucus. Utilization of a real-time identification method can not

only save time and costs but also save lives by identifying the pathogen quickly or prevent

pathogens from spreading in case of an epidemic disease.

Furthermore, the method presented in this dissertation can be extended to address antibi-

otic usage for the elimination of pathogens. As some pathogens are resident to antibiotics,

monitoring the effect of antibiotic use in the real-time or short interval can prohibit the

unnecessary usage of antibiotics in some cases.

This work can be extended to the multi-classification problem as well that I did not

have a chance to investigate in this dissertation. However, I believe the most important

improvement in the future of the pathogen identification will come from the area of deep

reinforcement learning. Deep reinforcement learning with a capability to determine actions

in sequence can be learned to predict the diagnostic decisions sequentially which enable

us to use biological knowledge of pathogens effectively. Nevertheless, given the difficulty

of reinforcement deep learning on complex tasks, it might take years for such methods to

outperform deep learning models, and thus, in the meantime improving the deep learning

models will continue to be beneficial. Also, deep learning methods can be used as a part of
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such deep reinforcement learning methods.
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Despite the attention that Raman Spectroscopy has gained recently in the area of pathogen

identification, the spectra analyses techniques are not well developed. In most scenarios they

rely on expert intervention to detect and assign the peaks of the spectra to specific molecu-

lar vibration. Although some investigators have used machine-learning techniques to classify

pathogens, these studies are usually limited to a specific application, and the generalization

of these techniques is not clear. Also, a wide range of algorithms have been developed for

classification problems, however, there is less insight to applying such methods on Raman

spectra. Furthermore, analyzing the Raman spectra requires pre-processing of the raw spec-

tra, in particular background removing. Various techniques are developed to remove the

background of the raw spectra accurately and with or without less expert intervention. Nev-

ertheless, as the background of the spectra varies in the different media, these methods still

require expert effort adding complexity and inefficiency to the identification task. This dis-

sertation describes the development of state-of-the-art classification techniques to identify S.

pyogenes from other species, including water and other confounding background pathogens.

We compared these techniques in terms of their classification accuracy, sensitivity, and speci-

ficity in addition to providing a bias-variance insight in selecting the number of principal

components in a principal component analysis (PCA). It was observed that Random Forest

provided a better result with an accuracy of 94.11%.
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Next, a novel deep learning technique was developed to remove background of the Raman

spectra and then identify the pathogen. The architecture of the network was discussed and it

was found that this method yields an accuracy of 100% in our test samples. This outperforms

other traditional machine learning techniques as discussed. In clinical applications of Raman

Spectroscopy, the samples have confounding background creates a challenging task for the

removal of the spectral background and subsequent identification of the pathogen in real-

time. We tested our methodology on datasets composed of confounding background such as

throat swabs from patients and discussed the robustness and generalization of the developed

method. It was found that the misclassification error of the test dataset was around 3.7%.

Also the realization of the trained model is discussed in detail to provide a better understating

and insight into the efficacy of the deep learning architecture. This technique provides a

platform for general analysis of other pathogens in confounding environments as well.
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